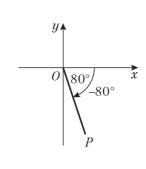
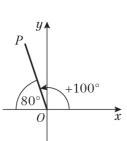
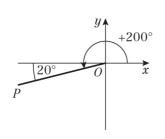
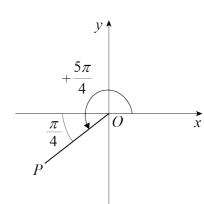
Solution Bank

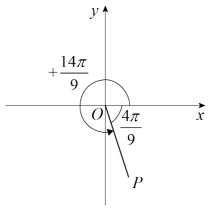

Exercise 6A

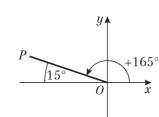

1 a

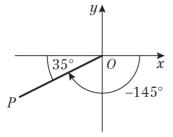

b

c

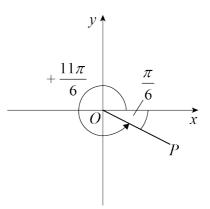

d

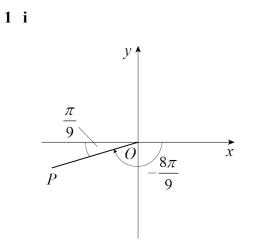


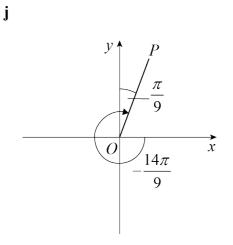


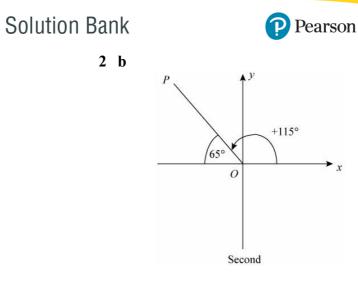


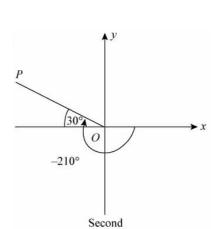
g

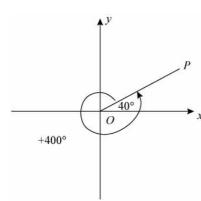


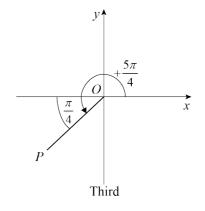

e

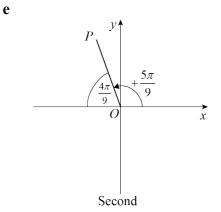



 \hat{x}





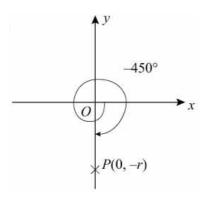


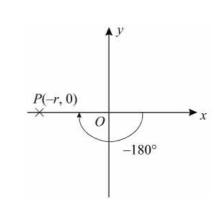


d

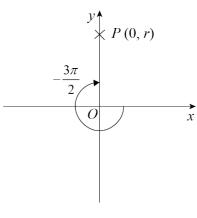
с

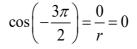
3 a

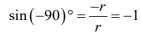

Pure Mathematics 2


 \rightarrow_x

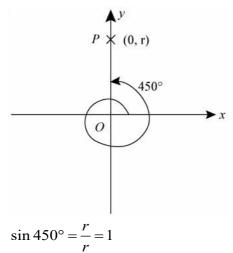
3 d

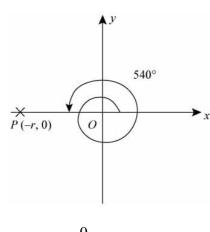

$$\sin\left(-450\right)^\circ = \frac{-r}{r} = -1$$

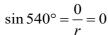



$$\cos\left(-180\right)^\circ = \frac{-r}{r} = -1$$

e

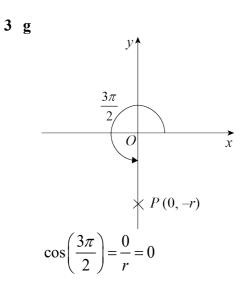


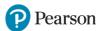

с

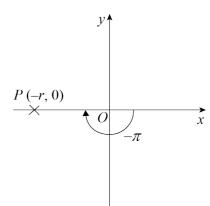


0

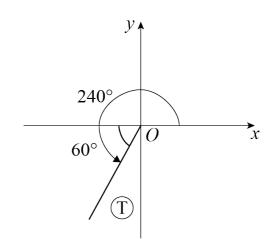
-90°

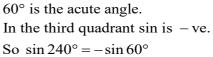

 $P \times (0,-r)$

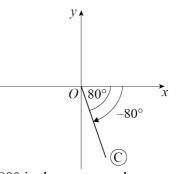



INTERNATIONAL A LEVEL

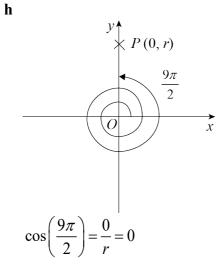
Pure Mathematics 2

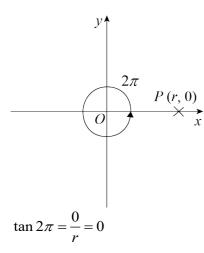


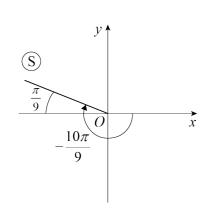


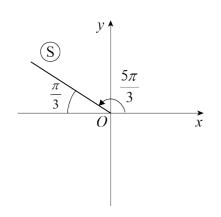

$$\tan(-\pi) = \frac{0}{-r} = 0$$

4 a




b


80° is the acute angle. In the fourth quadrant sin is -ve. So $sin(-80)^\circ = -sin 80^\circ$

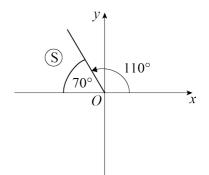


 $\frac{\pi}{9}$ is the acute angle.

In the second quadrant only sin is positive.

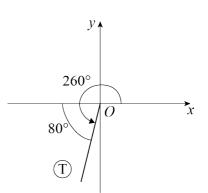
so $\sin\left(-\frac{10\pi}{9}\right) = \sin\left(\frac{\pi}{9}\right)$.

 $\frac{\pi}{3}$ is the acute angle.


In the fourth quadrant only cos is positive.

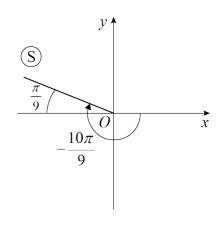
So $\sin\left(\frac{5\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right)$.

Solution Bank



4 e

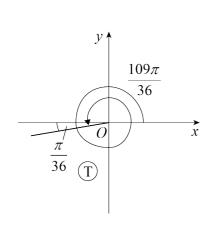
 70° is the acute angle. In the second quadrant cos is -ve. So $\cos 110^{\circ} = -\cos 70^{\circ}$


f

80° is the acute angle.

In the third quadrant cos is -ve. So $\cos 260^\circ = -\cos 80^\circ$

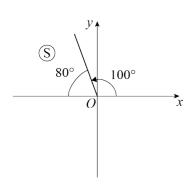
g



 $\frac{\pi}{9}$ is the acute angle.

In the second quadrant only sin is positive.

So
$$\cos\left(-\frac{10\pi}{9}\right) = -\cos\left(\frac{\pi}{9}\right)$$
.

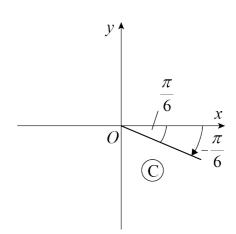


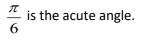
 $\frac{\pi}{36}$ is the acute angle.

In the third quadrant only tan is positive.

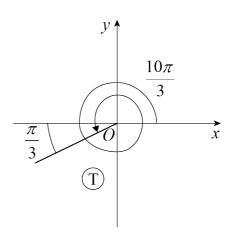
So
$$\cos\left(\frac{109\pi}{36}\right) = -\cos\left(\frac{\pi}{36}\right)$$
.

i


 80° is the acute angle. In the second quadrant tan is -ve. So $\tan 100^{\circ} = -\tan 80^{\circ}$


j

 35° is the acute angle. In the fourth quadrant tan is -ve. So $\tan 325^{\circ} = -\tan 35^{\circ}$

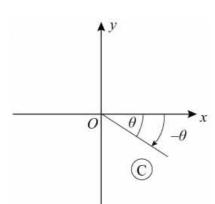

Solution Bank

4 k

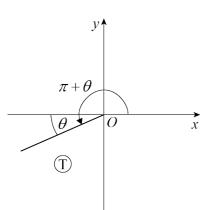
l

In the fourth quadrant only cos is positive.

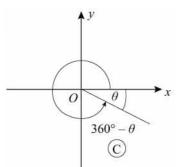
So $\tan\left(-\frac{\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right)$



 $\frac{\pi}{3}$ is the acute angle.


In the third quadrant only tan is positive.

So
$$\tan\left(\frac{10\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right)$$

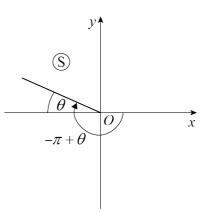

sin is -ve in this quadrant. So $sin(-\theta) = -sin\theta$

Only tan is + ve in this quadrant. So $\sin(\pi + \theta) = -\sin \theta$

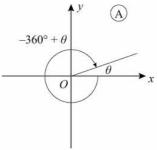
c

b

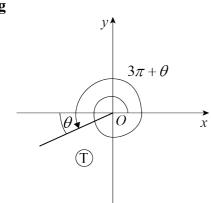
sin is -ve in this quadrant. So $sin(360^\circ - \theta) = -sin \theta$


Solution Bank

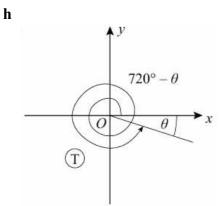
 $\sin is + ve$ in this quadrant.


So
$$\sin(180^\circ + \theta) = +\sin\theta$$

sin is +ve in this quadrant. So $\sin(-\pi + \theta) = -\sin \theta$

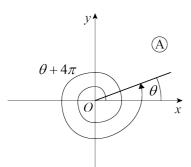

f

e



 $\sin is + ve$ in this quadrant.

So $\sin(-360^\circ + \theta) = +\sin\theta$


Only tan is + ve in this quadrant. So $\sin(3\pi + \theta) = -\sin\theta$

 $\sin is + ve in this quadrant.$

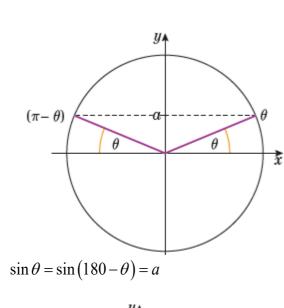
So
$$\sin(720^\circ - \theta) = -\sin\theta$$

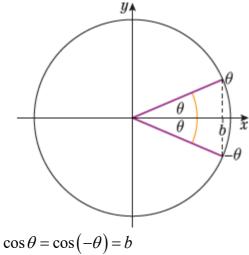
i

sin, cos and tan are all + ve in this quadrant. So $\sin(\theta + 4\pi) = \sin \theta$

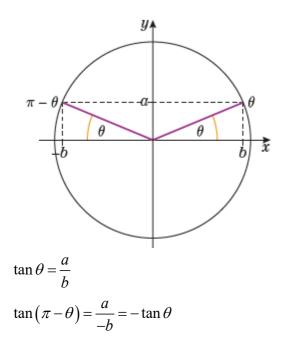
Solution Bank

- 6 **a** $\pi \theta$ is in the second quadrant, at θ to the horizontal. So $\cos(\pi - \theta) = -\cos\theta$
 - **b** $180^{\circ} + \theta$ is in the third quadrant, at θ to the horizontal. So $\cos(180^{\circ} + \theta) = -\cos\theta$
 - **c** $-\theta$ is in the fourth quadrant, at θ to the horizontal. So $\cos(-\theta) = +\cos\theta$
 - **d** $-(180^\circ \theta)$ is in the third quadrant, at θ to the horizontal. So $\cos -(180^\circ - \theta) = -\cos\theta$
 - e $\theta 2\pi$ is in the first quadrant, at θ to the horizontal. So $\cos(\theta - 2\pi) = \cos\theta$
 - **f** $\theta 540^{\circ}$ is in the third quadrant, at θ to the horizontal. So $\cos(\theta - 540^{\circ}) = -\cos\theta$
 - **g** $-\theta$ is in the fourth quadrant. So $tan(-\theta) = -tan\theta$
 - **h** $\pi \theta$ is in the second quadrant, at θ to the horizontal. So $\tan(\pi - \theta) = -\tan \theta$
 - i $(180^\circ + \theta)$ is in the third quadrant. So $\tan(180^\circ + \theta) = +\tan\theta$
 - **j** $-\pi + \theta$ is in the third quadrant. So $\tan(-\pi + \theta) = \tan \theta$
 - **k** $3\pi \theta$ is in the second quadrant. So $\tan(3\pi - \theta) = -\tan\theta$
 - $\mathbf{l} \quad \theta 2\pi \text{ is in the first quadrant.} \\ \text{So } \tan(\theta 2\pi) = \tan \theta$


Solution Bank



Challenge


a

b

c

