Pure Mathematics 2

Exercise 6A

1 a

b

c

1 f

g

d

e

h

Pure Mathematics 2

1 i

j

2 b

c

d

e

Pure Mathematics 2

3 d

$$
\sin (-450)^{\circ}=\frac{-r}{r}=-1
$$

e

$$
\cos (-180)^{\circ}=\frac{-r}{r}=-1
$$

f

$$
\cos \left(-\frac{3 \pi}{2}\right)=\frac{0}{r}=0
$$

$\sin 540^{\circ}=\frac{0}{r}=0$

INTERNATIONAL A LEVEL

Pure Mathematics 2

3 g

$\cos \left(\frac{3 \pi}{2}\right)=\frac{0}{r}=0$
h

$\cos \left(\frac{9 \pi}{2}\right)=\frac{0}{r}=0$
i

$\tan 2 \pi=\frac{0}{r}=0$

3 j

$\tan (-\pi)=\frac{0}{-r}=0$
4 a

60° is the acute angle.
In the third quadrant \sin is $-v e$.
So $\sin 240^{\circ}=-\sin 60^{\circ}$
b

80° is the acute angle.
In the fourth quadrant \sin is -ve .
So $\sin (-80)^{\circ}=-\sin 80^{\circ}$

INTERNATIONAL A LEVEL

Pure Mathematics 2

4 c

$\frac{\pi}{9}$ is the acute angle.
In the second quadrant only sin is positive.
so $\sin \left(-\frac{10 \pi}{9}\right)=\sin \left(\frac{\pi}{9}\right)$.
d

$\frac{\pi}{3}$ is the acute angle.
In the fourth quadrant only cos is positive.
So $\sin \left(\frac{5 \pi}{3}\right)=-\sin \left(\frac{\pi}{3}\right)$.

4 e

70° is the acute angle.
In the second quadrant cos is -ve .
So $\cos 110^{\circ}=-\cos 70^{\circ}$
f

80° is the acute angle.
In the third quadrant \cos is -ve .
So $\cos 260^{\circ}=-\cos 80^{\circ}$
g

$\frac{\pi}{9}$ is the acute angle.
In the second quadrant only \sin is positive.
So $\cos \left(-\frac{10 \pi}{9}\right)=-\cos \left(\frac{\pi}{9}\right)$.

INTERNATIONAL A LEVEL

Pure Mathematics 2

4 h

$\frac{\pi}{36}$ is the acute angle.
In the third quadrant only \tan is positive.
So $\cos \left(\frac{109 \pi}{36}\right)=-\cos \left(\frac{\pi}{36}\right)$.
i

80° is the acute angle.
In the second quadrant \tan is -ve .
So $\tan 100^{\circ}=-\tan 80^{\circ}$
j

35° is the acute angle.
In the fourth quadrant \tan is -ve .
So $\tan 325^{\circ}=-\tan 35^{\circ}$

4 k

$\frac{\pi}{6}$ is the acute angle.
In the fourth quadrant only cos is positive.
So $\tan \left(-\frac{\pi}{6}\right)=-\tan \left(\frac{\pi}{6}\right)$
I

$\frac{\pi}{3}$ is the acute angle.
In the third quadrant only \tan is positive.
So $\tan \left(\frac{10 \pi}{3}\right)=\tan \left(\frac{\pi}{3}\right)$

INTERNATIONAL A LEVEL

Pure Mathematics 2

5 a

\sin is $-v e$ in this quadrant.
So $\sin (-\theta)=-\sin \theta$
b

Only \tan is + ve in this quadrant.
So $\sin (\pi+\theta)=-\sin \theta$
c

\sin is -ve in this quadrant.
So $\sin \left(360^{\circ}-\theta\right)=-\sin \theta$

5 d

\sin is $+v e$ in this quadrant.
So $\sin -\left(180^{\circ}+\theta\right)=+\sin \theta$
e

\sin is +ve in this quadrant.
So $\sin (-\pi+\theta)=-\sin \theta$
f

\sin is +ve in this quadrant.
So $\sin \left(-360^{\circ}+\theta\right)=+\sin \theta$

Pure Mathematics 2

5 g

Only \tan is + ve in this quadrant.
So $\sin (3 \pi+\theta)=-\sin \theta$
h

\sin is +ve in this quadrant.
So $\sin \left(720^{\circ}-\theta\right)=-\sin \theta$
i

sin, \cos and \tan are all + ve in this quadrant.
So $\sin (\theta+4 \pi)=\sin \theta$

6 a $\pi-\theta$ is in the second quadrant, at θ to the horizontal.
So $\cos (\pi-\theta)=-\cos \theta$
b $180^{\circ}+\theta$ is in the third quadrant, at θ to the horizontal.
So $\cos \left(180^{\circ}+\theta\right)=-\cos \theta$
c $-\theta$ is in the fourth quadrant, at θ to the horizontal.
So $\cos (-\theta)=+\cos \theta$
d $-\left(180^{\circ}-\theta\right)$ is in the third quadrant, at θ to the horizontal.
So $\cos -\left(180^{\circ}-\theta\right)=-\cos \theta$
e $\theta-2 \pi$ is in the first quadrant, at θ to the horizontal.
So $\cos (\theta-2 \pi)=\cos \theta$
f $\theta-540^{\circ}$ is in the third quadrant, at θ to the horizontal.
So $\cos \left(\theta-540^{\circ}\right)=-\cos \theta$
$\mathbf{g}-\theta$ is in the fourth quadrant.
So $\tan (-\theta)=-\tan \theta$
h $\pi-\theta$ is in the second quadrant, at θ to the horizontal.
So $\tan (\pi-\theta)=-\tan \theta$
i $\left(180^{\circ}+\theta\right)$ is in the third quadrant.
So $\tan \left(180^{\circ}+\theta\right)=+\tan \theta$
j $-\pi+\theta$ is in the third quadrant.
So $\tan (-\pi+\theta)=\tan \theta$
k $3 \pi-\theta$ is in the second quadrant.
So $\tan (3 \pi-\theta)=-\tan \theta$
l $\theta-2 \pi$ is in the first quadrant.
So $\tan (\theta-2 \pi)=\tan \theta$

Pure Mathematics 2

Challenge

a

$\sin \theta=\sin (180-\theta)=a$
b

$\cos \theta=\cos (-\theta)=b$
C

$\tan \theta=\frac{a}{b}$
$\tan (\pi-\theta)=\frac{a}{-b}=-\tan \theta$

